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Many thermodynamic instabilities in one dimension (e.g., DNA thermal dena-
turation, wetting of interfaces) can be described in terms of simple models
involving harmonic coupling between nearest neighbors and an asymmetric
on-site potential with a repulsive core, a stable minimum and a flat top. The
paper deals with the case of the Morse on-site potential, which can be treated
exactly in the continuum limit. Analytical expressions for correlation functions
are derived; they are shown to obey scaling; numerical transfer-integral values
obtained for a discrete version of the model exhibit the same critical behavior.
Furthermore, it is shown in detail that the onset of the transition can be
characterized by an entropic stabilization of an—otherwise unstable—nonlinear
field configuration, a soliton-like domain wall (DW) with macroscopic energy
content. The statistical mechanics of the DW provides an exact estimate of the
critical temperature for a wide range of the discretization parameter; this
suggests that the transition can be accurately viewed as being ‘‘driven’’ by a
nonlinear entity.

KEY WORDS: Statistical mechanics; solitons; correlations; scaling; transfer
integral.

1. INTRODUCTION

In a seminal paper published a quarter-century ago, Krumhansl and
Schrieffer (1) explored the possibility that nonlinear excitations (solitons)
might drive structural phase transitions. They succeeded in identifying
signatures of ‘‘domain walls (DW)’’ in the thermodynamic properties of the
one-dimensional f4 model and gave a phenomenological account of a



salient feature of structural phase transitions, the appearance of a central
peak in the dynamical spectrum. However, important issues remained
open. In particular, because the demonstration was limited to a system
which does not exhibit a genuine (i.e., finite-temperature) thermodynamic
phase transition, there was no possibility to explore the role of exact, or
nearly exact, nonlinear field configurations in determining critical behavior,
static or dynamic.

A class of one-dimensional models, which has been proposed to
describe a wide variety of thermodynamic instabilities, such as thermal
DNA denaturation, (2–5) wetting of interfaces, (6) and other similar phenom-
ena, could prove to be of interest in the above context. Typically, such
models include a short-range interaction between near neighbors, and an
on-site potential with a single minimum and a flat-top; in the context of
DNA denaturation, as the temperature increases, particles begin to access
the region of the flat top at an increasing rate, until, at a finite temperature,
a macroscopic instability occurs, with a divergence in the average displa-
cement (the ‘‘effective length’’ of the hydrogen bond which holds the
double-stranded chain together), a divergent correlation length, and,
generally, all the characteristics of a thermodynamic phase transition. In
the simplest case, that of a harmonic interaction and a Morse on-site
potential, the thermodynamics can be calculated exactly by using func-
tional integral techniques (1) and mapping the problem to the quantum
mechanics of the Morse oscillator. The thermodynamic transition corre-
sponds to the quantum mechanics of the disappearance of the last bound
state.

In this paper, we will show that soliton physics can offer a correct
interpretation of such thermodynamic instabilities. In particular, a relatively
brief calculation can show us why and when a thermodynamic transition
occurs. The logic can be summarized as follows: An exact, static nonlinear
configuration of the continuum field can be found, which ‘‘interpolates’’
between the low- and the high-temperature phase. We interpret this to a be
a DW. The total energy of the configuration diverges, because each site
which is in the high-temperature phase contributes a finite amount of bond
(and elastic) energy. The infinity is in a sense a ‘‘minimal requirement:’’ as
long as the DW energy is finite, no phase transition can occur in one
dimension. (7) A closer look at the properties of the DW is more revealing.
In contrast to other Klein–Gordon field theories with a finite-energy kink,
there is no zero-frequency Goldstone mode. It costs energy to shift the
position of DW so that it can include more sites at the high-temperature
phase. Conversely, there is an energy gain by ‘‘zipping back’’ to the low-
temperature phase. At finite temperatures, the picture must be corrected
to include entropic effects. The ‘‘phonon cloud’’ which accompanies the
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DW provides an entropic gain which ultimately balances the energy cost of
extending the DW to macroscopic scale. The formation of a thermally
stable DW is thus seen to ‘‘drive’’ the instability. At higher temperatures,
it is entropically advantageous for a DW to extend itself by ‘‘unzipping’’
more sites towards the high temperature phase. The picture sketched
above, which concentrates entirely on the thermal stability of the nonlinear
interface, is more than a qualitative nonlinear scenario. It provides an
estimate of the transition temperature which (i) turns out to be exact within
the continuum field framework and, (ii) can be nonperturbatively extended
to describe lattice systems up to quite high levels of discretization.

The paper is structured as follows: Section 2 provides a full account of
exact results for the model. This is important to establish notation and
context for the discussion. Moreover, although some results have appeared
in the literature before, they are scattered in various sources; in addition,
results for the correlation function and the susceptibility are new and the
calculation has not been reported elsewhere. (8) Section 3 deals with the
soliton physics of the transition. A brief discussion of results and further
perspectives, with special emphasis to effects due to lattice discreteness, is
given in Section 4.

2. EXACT THERMODYNAMICS

2.1. Model and Notation

The Hamiltonian of the model is (4)

H=C
j

5 p2j
2m
+
K
2
(yj−yj−1)2+V(yj)+Dhayj6 (2.1)

where m is the reduced mass of a base pair, yj denotes the stretching of
the hydrogen bonds connecting the two bases of the jth pair and pj=
m(dyj/dt) corresponds to the conjugate momentum of yj.

In addition to the kinetic and nearest-neighbor potential energy terms,
(2.1) contains: (i) an on-site potential which describes the interaction of the
two bases in a pair; the Morse potential

V(yj)=D(e−ayj−1)2 (2.2)

plotted in Fig. 1, has been chosen because it has the correct qualitative
shape; and (ii), a field-dependent term, which describes the effect of a
transverse, external stress h.
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Fig. 1. The Morse potential V(y) is shown (solid line) as a function of the dimensionless
field ay. The groundstate wavefunction f0(y) (Eq. (2.19)) is shown for different values of the
temperature: dashed line for T=Tc/2.6, dotted line for T=Tc/1.3. Note the logarithmic scale
for f0(y).

A set of parameters which has been used in the DNA denaturation
context (4, 5) is: a dissociation energy D=0.03 eV, a coupling constant K=
0.06 eV/Å2, a spatial scale factor of the Morse potential a=4.5Å−1, and a
mass m=300 amu; the time scale is determined by w0=(K/m)1/2. The
dimensionless ratio R=Da2/K is traditionally used to distinguish between
the ‘‘order-disorder’’ (discrete, R± 1) and ‘‘displacive’’ (continuum,
R° 1) regime; the given set of parameters corresponds to R=10.1.

The classical thermodynamic properties of (2.1) can be described
exactly in terms of the transfer integral (TI) equation (9, 1)

F
+.

−.
dy e−b[V(x)+V(y)+K(x−y)+Dah(y+x)]/2fn(y)=e−benfn(x) (2.3)

where b=1/(kBT), kB is the Boltzmann constant and T is the temperature.
In general, we are interested in situations for which h=0; however, the

external field is useful in practical calculations as a mathematical device.
For example, by letting hQ 0+ it is possible to extract the scaling behavior
near the transition; moreover, since the partition function is now
divergence-free at any h > 0 (and numerical calculations can in principle be
performed at finite, decreasing h), previous criticism of the model on
formal mathematical grounds (10) is addressed.
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In the thermodynamic limit, the free energy per site (except for a non-
singular term due to the integral over momenta) is determined by the
smallest eigenvalue e0 of (2.3), i.e.,

f=e0−
1
2b

ln 52pm
b
6 (2.4)

Other thermodynamic properties of interest are (i) the order parameter

s=OyP=F
+.

−.
dy y |f0 |2 (2.5)

where f0 is the normalized eigenstate corresponding to the eigenvalue e0
and (ii) the correlation function

C(j) — O(yj−s)(y0−s)P=C
+.

n=1
|Mn |2 e−Dn |j| (2.6)

where the sum runs over states other than f0,

Dn — b(en− e0) (2.7)

and the off-diagonal matrix elementsMn are given (in Dirac notation) by

Mn=On| (y−OyP) |0P=On| y |0P (2.8)

2.2. The Corresponding Morse Oscillator Problem

In the gradient expansion (continuum) approximation,

fn(y)=fn(x)+f −n(x)(y−x)+f'n (x)(y−x)
2/2+O((y−x)3) (2.9)

which is strictly valid in the temperature window D° kBT° D/R, (11) the
integral equation (2.3) can be well approximated by the second-order
differential equation

5− 1
2b2K

d2

dy2
+D(e−ay−1)2+Dhay6 fn(y)=enfn(y) (2.10)

where en=en+ln(2p/bK)/2b. The one-dimensional statistical mechanics
TI problem is thus mapped (2) to the zero-dimensional quantum mechanics
problem of the Morse oscillator.
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In the following, we will list and/or derive some general properties of
(2.12) at h=0. The change of variables

z=2d exp(−ay) with d=
b

a
`2DK (2.11)

the transformation fn(y)=e−z/2z swn(z) and s=d`1−en/D, leads to

z
d2wn
dz2
+(2s+1−z)

dwn
dz
+nwn=0 (2.12)

where n=d−s−1/2. If n is a positive integer, the solution of (2.12) is a
Laguerre polynomial. (12)

2.3. Bound State(s) and Associated Distinct Length Scales

Noting that fn(y) remains finite over the interval [0,+.[ only for
positive values of s, we obtain the spectrum of bound states,

en
D
=1−11−n+1/2

d
22 with n=0, 1,..., E(d−1/2) (2.13)

where E(d−1/2) is the integer part of d−1/2. It follows that as long as d

exceeds a critical value dc=1/2, the ground state remains bounded. In the
quantum problem, this provides a criterion for the critical mass of a par-
ticle below which it is driven out of the potential well by quantum fluctua-
tions. We note that this is a general property of asymmetric potential wells;
symmetric wells support a bound state for any value of d. (19, 20)

Using (2.11), this dc defines a critical temperature

Tc=
2`2KD

akB
(2.14)

in terms of which d=Tc/2T. As the temperature approaches Tc, the last
bound state becomes less and less localized, and OyP increases sharply,
indicating the ‘‘melting’’ of the system.

Using (2.4) results in a free energy per site f=e0+f0, where

f0=−
1
b

ln 1 2p
bw0
2 (2.15)
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and

e0=D[1−|t|2] if T < Tc

=D otherwise (2.16)

where t=T/Tc−1 is the reduced temperature; it follows that the entropy
per site can be written as the sum of a non-singular part

Snon-sing=S(Tc)+kB log 1 T
Tc
2 (2.17)

and a singular part,

Ssing=
2D
Tc
t if T < Tc

=0 otherwise (2.18)

We note that (2.18) implies a jump discontinuity of the specific heat at Tc;
this is consistent with a specific heat critical exponent a=0.

For Tc/3 < T < Tc, the (normalized) ground state

f0==
a

C(2d−1)
e−z/2zd−1/2 (2.19)

where C is the gamma function, is the only bound state. The asymptotic
behavior f0(y)3 e−a(d−1/2) y defines the spatial extent of the ground state

l=
1

a(d−1/2)
(2.20)

The order parameter, obtained from Eqs. (2.5) and (2.19), is (13)

s=
1
a
[ln(2d)−k(2d−1)] (2.21)

where k is the digamma function; in the vicinity of the critical temperature,
this reduces to

s ’
1

a(2d−1)
=

l

2
=
1
2adc

T
Tc
|t|−1 (2.22)
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Fig. 2. Left scale: dependence of the order parameter s (diamonds) and its fluctuations t+

(triangles) as a function of the reduced temperature t; the points were obtained numerically
using the TI method; the solid line shows the analytical estimate, Eq. (2.22), with dc=0.36.
Right scale: the susceptibility q as a function t (squares: numerical TI; solid line: Eq. (2.40)
with dc=0.36).

In the language of phase transitions, s 3 |t|b, where b=−1 is the critical
exponent for the order parameter, i.e., the order parameter diverges at the
instability. Figure 2 shows that the agreement of numerical TI values with
(2.22) is excellent, provided one takes into account the numerical TI value
of dc=0.36 (corresponding to Tc=427K) for the discrete system.

Local fluctuations of the order parameter are described by (13)

t+=`O0| (y−s)2 |0P=
`kŒ(2d−1)

a
(2.23)

In the vicinity of the critical temperature, this reduces to

t+ ’
1

a(2d−1)
=

l

2
(2.24)

which implies t+ 3 |t|−n + with n+=−b=1. Close to the transition, the
order parameter and its fluctuations are therefore comparable, as shown by
Fig. 2; in the wetting literature (6) they are both interchangeably referred to
as ‘‘transverse correlation lengths.’’
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Fig. 3. Dependence of (e1−e0)/D on the reduced temperature. The solid line corresponds to
the exact (continuum) result |t|2, cf. (2.25). The diamonds are numerical TI results.

If we denote the lattice constant by a and identify the next-to-lowest
eigenstate with the bottom of the continuum band, we obtain the inverse
longitudinal correlation length

a

t| |
=b(e1−e0) 4 b(D−e0)=bD |t|2=

bD
(dal)2

(2.25)

i.e., the corresponding critical exponent n| |=2. The solid line plotted in
Fig. 3 shows a perfect agreement for the difference of the two first eigen-
values, between Eq. (2.25) and numerical TI results.

2.4. Static Structure Factor and Susceptibility

In terms of the correlation functions derived above, the static structure
factor reads

S(q, T)= C
+.

j=−.
e iqjaC(j) (2.26)

= C
+.

j=−.
C
+.

o=1
|Mo |2 e iqja−Do | j| (2.27)

=C
+.

o=1
|Mo |2

sinh Do

cosh Do− cos(qa)
(2.28)
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where the sum extends over all the scattering states of Eq. (2.10). They are
given by the second solution (14) of the confluent hypergeometric equa-
tion (2.12) for imaginary s=io. In the notation of Eq. (13.1.1) of ref. 14,
the solution w(z)=U(1/2−d+io, 1+2io, z) has the correct asymptotic
behavior: it grows as zd−1/2−io as zQ+. (i.e., yQ −.), so that the
exponential prefactor in the definition of fo dominates the vanishing of the
wavefunction at the Morse hard core. These scattering states correspond to
plane wave superposition

w(z)3 1−e2ih(o, d)z−2io (2.29)

as zQ 0 (i.e., yQ+.) where h(o)=arg C(1+2io)+arg C(1/2−d−io).
The unnormalized continuum eigenstates are therefore given in the asymp-
totic limit yQ. by

fo(y)=sin(oay+h(o)) (2.30)

and the corresponding eigenvalues by

eo=D(1+o2/d2) (2.31)

As eo and eo differ by a quantity that does not depend on o, from
(2.31) and (2.7) we identify

Do=
bD
d2
[(d−1/2)2+o2] (2.32)

Near the critical instability and in the long-wavelength limit qa° 1,
the static structure factor can be calculated as follows for a given value of
qt| |. Due to the rapid oscillations of the scattering eigenstates (2.30), matrix
elements will vanish for large values of o whereas, for small o, the phase
shift can be approximated by h=−arctan(ola). Since the ground state
extends to large values of y, for most of the interval of integration we can
use the asymptotic form (2.30) of the continuum states. Normalizing in a
box of size (O(L0), L/2) to account for the soft core, the ground and
excited states are respectively

f0(y) 4=
2
l
e−y/l (2.33)

fo(y) 4
2i

`L
sin(oay+h(o)) (2.34)
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where L is the system size. We obtain

Mo 4 i
=8l3
L

sin(s+h)
1+o2l2a2

(2.35)

where s — 2 arctan(ola)=−2h. This explicitly gives tan(h+s)=ola and
hence

|Mo |2 4
8l3

L
o2l2a2

(1+o2l2a2)3
(2.36)

In order to substitute the sum over o by an integral in Eq. (2.28), we need
the correct density of space in o space; this can be obtained by setting the
eigenfunction of (2.34) equal to zero at the boundary x=L/2 and leads to
a density of states aL/2p. Equation (2.28) can be rewritten as

S(q, T)=l2
t| |

a
F(qt| |) (2.37)

where

F(x)=
2
x2
51− 1

cosh(arcsinh(x)/2)
6 (2.38)

Figure 4 demonstrates that the reduced quantity

S(q, T)
S(0, T)

=
F(qt| |)
F(0)

=4F(qt| |) (2.39)

obtained in the continuum approximation gives an excellent description
of the discrete (TI) results over many decades of the dimensionless vari-
able qt; note that in the second equation we have made use of the property
F(0)=1/4.

The zero stress isothermal susceptibility is given by

q=lim
hQ 0

1“s
“h
2
T

=bDa2S(0, T)

=
1
4d2
|t|−4

=1 1
2dc

T
Tc
22 |t|−4 (2.40)
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Fig. 4. The reduced static structure factor S(q, T)/S(0, T) as a function of qt for different
values of the reduced temperature.The solid line is the theoretical curve (2.39) whereas the
symbols were obtained using the TI method for different values of the temperature.

i.e., the corresponding critical exponent is c=4. Again with dc=0.36,
Fig. 2 demonstrates excellent agreement of (2.40) with TI values over many
decades.

At temperatures very near Tc and finite q, i.e., for qt| | ± 1, F(x) ’
2/x2 and hence

S(q, Tc)3
1

(qa)2−g
(2.41)

with g=0.

2.5. The DNA Order Parameter

The quantity which is directly accessible in DNA denaturation in the
fraction of bound base pairs, which can be measured using UV absorbance.
The probability P(y < b, T) of finding a given base pair at an equilibrium
distance smaller than b (equal to the fraction of bound pairs, with a proper
choice of b), is given by

PI(y < b, T)=F
b

−.
dy |f0(y)|2 (2.42)

=1−
c(2d−1, 2de−ab)

C(2d−1)
(2.43)

% (2d−1) Ei(2de−ab) (2.44)
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Fig. 5. The fraction of bound base pairs P(y < 2 Å, T) as a function of the T/Tc. The
triangles are TI values, whereas the solid line corresponds to the theoretical prediction (2.44).

where c is the incomplete gamma function, Ei is the exponential-integral
function, and the last line is valid in the vicinity of Tc. For the class of
models effectively described by the Morse potential, the fraction of bound
pairs approaches zero linearly as TQ Tc, for any value of b (cf. Fig. 5). The
slope, as expected, reflects the particular choice of b.

3. AN ALTERNATIVE VIEW OF THE TRANSITION: THERMAL

STABILITY OF THE DOMAIN WALL

3.1. Elementary Dynamics

The equation of motion corresponding to (2.1) is

mÿn=K(yn+1+yn−1−2yn)−
“V
“yn

(3.1)

or, in the continuum limit,

ÿ=c20
“
2y
“x2
−
1
m
“V
“y

(3.2)

where c0=w0a. Relevant static configurations of the infinite chain with free
ends, derivable from (3.2) are:
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(a) The uniform solution at the minimum of V(y), y(x) — 0; this
configuration corresponds to the absolute minimum of the total potential
energy (equal to zero) and is stable with respect to small amplitude fluc-
tuations; linearized solutions of (3.2) are optical phonons.

(b) For very large values of y, V(y) is almost a constant; therefore,
expressions which verify d2y/dx2=0, i.e., of the form limMQ. [y(x)−M]
=C·x, where C > 0 is an arbitrary constant, are approximate solutions in
the sense that they correspond to local minima of the total potential energy;
linearization of (3.2) around them leads to an acoustic phonon spectrum.

(c) an exact, unbounded, domain-wall like solution

y ±DW(x)=
1
a

ln [1+e ±(x−x0)/d] (3.3)

where d=a/`2R and x0 is an arbitrary constant.

The solution (3.3) is plotted in Fig. 6 for the case of the upper sign.
It represents a nonlinear field configuration which ‘‘interpolates’’ from the

Fig. 6. The dashed line represents the domain wall solution (3.3) as a function of the
dimensionless space variable z. The full line represents the effective potential of the Schrödinger-
like equation (3.7). The potential marginally fails to support bound states. Scattering states
with eigenvalues less than the top of the potential (i.e., between dashed and dashed-double-
dotted lines) are confined to the right-half of the line (low-frequency acoustic phonons); those
with higher eigenvalues consist of both transmitted and reflected waves with different wave-
vectors and hence different dispersion relations in the two halves of the line (corresponding to
both hard, i.e., optical, and soft, i.e., acoustic phonons, cf. text).
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stable minimum (a) to a particular member of the metastable configura-
tions (b), with a slope C=1/(ad), and hence equal contributions to the
elastic and the on-site potential energy densities (D per site). In other words
it is a profile of a double chain where the two strands stick together if
x < x0, but strand separation grows linearly for all points x± x0; the
energy of the solution contains a term which is proportional to the number
of sites to the right of x0. More exactly, if lattice sites are numbered from 0
to N,

E+DW=1N−
x0
a

2 2D+O(N0) (3.4)

At zero temperature the profile (3.3) is not stable. Since

E+DW(x0± a)−E
+
DW(x0)= + 2aD (3.5)

the wall will spontaneously move to the right, ‘‘zipping’’ back the unbound
portion of the double chain. We will consider below how this instability
changes under the influence of temperature.

3.2. Linearisation Around the DW

Consider small deviations with respect to (3.3), i.e.,

y(x, t)=y+DW(x−x0)+C
j

ajfj(x−x0) e−iwj t (3.6)

where |aj |° a. The linearization around the domain wall solution pre-
sented here is an approximate study of the stability analysis. We have
considered the lowest order (linear) perturbation since introducing time-
dependent parameters (x0(t),...) would only lead to higher order effects.
The linearized eigenfunctions fj satisfy the equation

−
d2fj
dz2
+2[1− tanh z− sech2 z] fj=

2w2j
Rw20

fj (3.7)

where z=(x−x0)/(2d). Equation (3.7) is Schrödinger-like with an effec-
tive potential drawn in Fig. 6. It can be shown (20) that (3.7) has no bound
states; scattering states are of two types:
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(I) if w2q < 2Rw20 they are confined to the right half of the z-axis; for
x± x0

fq ’ cos[k−z+dI] — cos[q(x−x0)+dI] (3.8)

where

dI

2
=arg C(ik−)−arg C 11

2
o+−1+

i
2
k− 2−arg C 11

2
o++2+

i
2
k− 2

(3.9)

k2− — 2w
2
q/(Rw20), o2 — 4−k2− , q — k−/(2d) and therefore

wq

w0
=qa if qa <`2R (3.10)

i.e., the ‘‘phonons’’ with the low frequencies are soft, acoustic phonons, as
one expects them to be, since they correspond to atoms oscillating on the
flat portion of the Morse potential.

(II) in the high frequency case, i.e., if w2q > 2Rw20, scattering states
extend over the whole line and have both transmitted and reflected com-
ponents. Specifically,

fq(z)=˛
e−ik− z+r1/2e i(k− z+d

r
II) if zQ.

1k−
k+

y2
1/2

e−i(k+z+d
y
II) if zQ −.

(3.11)

where

r=5sinh p2 (k− −k+)
sinh p2 (k−+k+)

62 (3.12)

y=1−r, k2+=4−k
2
− , q+ — k+/(2d) and therefore

wq

w0
=˛qa if qa >`2R, x± x0
[2R+(q+a)2]1/2 any q+, x° x0

(3.13)

i.e., the dispersion relation is different in the soft (unbound) segment and
the hard (bound) segment of the line (see Fig. 7). Formally, we can
combine the two results for the dispersion into two branches, one optical
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Fig. 7. Continuum limit dispersion relations for the soft (Eq. (3.10) as a dotted line) and
hard (Eq. (3.13) as a solid line) phonons; they extend to qlQ.. The discrete dispersion rela-
tions (4.1) are also shown, with dashed line (hard) and dash-dotted line (soft). All curves have
been drawn for R=10.1; note the formation of a frequency gap between the two branches of
the discrete spectrum for R > 2.

and one acoustic, for each value of q, without any restrictions. However, it
should be borne in mind that the acoustic phonons physically reside in the
soft (unbound) and the optical ones in the hard (bound) segment of the
line.

For completeness we list the phase shifts

dyII=2 arg C 52+i
2
(k−+k+)6−arg C(1+ik+)−arg C(1+ik−)−p

(3.14)

drII=−2 arg C 52+i
2
(k−+k+)6−2 arg C 52+i

2
(k− −k+)6

+2 arg C(1+ik−) (3.15)

3.3. Free Energy of the Thermally Dressed DW

At finite temperatures, the domain wall is accompanied by a phonon
cloud. The phonon cloud contributes three terms to the free energy, which
arise from cases I (soft), II (soft), II (hard) presented in the previous
subsection. Because these phonons reside in different—and in general
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unequal—portions of the chain, their contributions to the free energy
depend on the position of the DW. Specifically,

Fsoft=kBT C
q

ln b(wacq (3.16)

Fhard=kBT C
q

ln b(woptq (3.17)

where contributions from soft modes have been combined. The sum over q
can be replaced by a density of states determined by

q(N−x0)=np, n=0, 1, 2,... (soft) (3.18)

q(N+x0)=np, n=0, 1, 2,... (hard) (3.19)

This results in a phonon-cloud free energy

Fphonon-cloud=kBTx0 F
.

0

dq
p

ln
woptq
wacq
+·· · (3.20)

where the ellipsis denotes terms independent of x0 and, since the integrand
is ultraviolet-convergent, we have extended the upper limit of the integra-
tion to infinity. This is consistent with the continuum limit treated in this
work; an ultraviolet divergence present in the ellipsis can be corrected by
the introduction of a lattice cutoff but this is irrelevant for the purposes of
the present argument. Introducing the correct dispersion relations for
optical and acoustic phonons, we can evaluate (15) the integral in (3.20). This
results in a total free energy (DW plus phonon cloud)

FDW=const+1kBT
`2R

2
−2D2 x0

a
(3.21)

Equation (3.21) is the central result of this section. It describes in very
simple terms why and when the phase transition occurs. At temperatures
lower than

Tc=
2`2 D

kB `R
=
2`2KD

akB
(3.22)

the prefactor of x0 is negative; the DW’s natural tendency is towards high
positive values of x0, i.e., it ‘‘zips’’ the system back to the bound configu-
ration. Conversely, at temperatures higher than Tc, thermal stability is
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Fig. 8. Free energy of the DW (in units of D) for temperatures above (T=3/2Tc, solid line),
below (T=1/2Tc, dashed line) and at Tc (dotted line), according to Eq. (3.21); the irrelevant
constant has been omitted.

achieved by a high negative value of x0, i.e., the DW ‘‘opens up,’’ unbinds
the system. At the critical point, the DW is thermally (meta)stable at any
position; this corresponds to physical realizations of the chain at criticality.
It should be noted that the value of Tc predicted by the above DW argu-
ment coincides with the exact result (2.14) of the continuum limit. This
supports the validity of the alternative description of the phase transition in
terms of the thermal stability of the DW.

4. DISCUSSION

We have given a detailed account of the exact thermodynamics and
the scattering function S(q, T) of a model used to describe thermal DNA
denaturation, as well as other one-dimensional instabilities. The model
deserves special attention for two reasons: (a) it is probably the simplest
exactly solvable lattice model in one dimension which exhibits a true
thermodynamic transition and satisfies all scaling laws (cf. below), and (b)
the transition can be understood in terms of the thermal stability of a
soliton-like nonlinear configuration. A number of comments are in order:

(1) None of the ‘‘prohibitions’’ of phase transitions in one dimension
apply to this model. The theorem by Gursey (16) and the van-Hove demon-
stration, (17) extended by Ruelle (18) apply to systems with pair interactions
only (i.e., translationally invariant). The standard Landau (7) argument,
which covers systems with on-site potentials (e.g., f4) rests on the finiteness
of the DW energy.
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Fig. 9. Phase diagram in the (T, h) plane. At negative h, the system is unstable at all tem-
peratures.

(2) The critical exponents calculated analytically from the properties
of the Schrödinger equation (2.10) satisfy all applicable scaling laws, i.e.,
dn| |=2−a=c+2b and c=(2−g) n| |. Figures 2–4 demonstrate very good
agreement between the thermodynamic behavior calculated from numerical
TI, and the one obtained exactly from Eq. (2.10). It appears that ‘‘univer-
sality’’ extends to prefactors and not just to exponents—provided that
corrections due to the absolute value of critical point are taken into
account. This in spite of the fact that the TI values refer to a system with a
very high degree of discreteness (R=10.1).

(3) It is instructive to view the phase diagram in the (h, T) plane
(Fig. 9). For positive values of the external field h, there is confinement at
all temperatures. In the limit hQ 0+, the system approaches a confined
(T < Tc), or a deconfined (T > Tc) state. The TI (and the exact, Schrödinger)
solutions presented here refer to the limit of the (h=0+, T) confined state
as TQ T−c (thick line). Finally, at any h < 0, the system is unstable.

(4) The scattering function (2.37) shows typical Ornstein–Zernike
behavior. Its form demands that at least some of the weight cannot come
from phonons. We will report details of critical dynamics in a separate
paper. Preliminary results suggest the occurrence of a central peak. It will
be interesting to relate critical dynamics with large-scale fluctuations of
nonlinear configurations.

(5) The estimate (3.22) of the critical temperature can be extended to
cover discrete systems. This is done by introducing the discrete dispersion
relations

w2q
w20
=˛2(1− cos(qa))+2R (optical)

2(1− cos(qa)) (acoustic)
(4.1)
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in Eq. (3.20) which describes the free energy of the phonon cloud accom-
panying the DW. Numerical experiments have demonstrated (21) that the
asymptotic slope of the DW is given by the same function of R for arbi-
trary levels of discreteness, i.e., limnQ.(yn−yn−1)/a=1/(ad)=`2R/(aa)=
`2D/K/a. It follows that each site which finds itself in the high tempera-
ture phase contributes an elastic energy equal to (1/2) K(yn−yn−1)2=D
and an on-site energy equal to D, i.e., a total of 2D. This is a property of
the DW, continuum or discrete. Therefore, the only modification to (3.21)
and (3.22) comes from the entropy of the phonon cloud. In detail, using (15)

Ig(R) —
1
2p

F
p

0
dx ln[1− cos x+R]=ln 5`R+`R+2

2
6 (4.2)

we obtain from (3.20)

Fphonon-cloud=
kBTx0
a
[Ig(R)−Ig(0)] (4.3)

Fig. 10. Dependence of the critical temperature on the discreteness parameter R. The dotted
curve shows the continuum estimate, (3.22). The solid curve corresponds to (4.4), whereas the
triangles denote the numerical TI values; agreement is excellent for values of R well into the
discrete regime; nonetheless, systematic deviations can be seen, starting at R > 4 (cf. text).
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which results in the estimate

Tc=
2D

kB ln[`R/2+`1+R/2]
(4.4)

In the limit R° 1, Eq. (4.4) reduces to Eq. (3.22). It can be seen in
Fig. 10 that the nonperturbative theoretical estimate (4.4) is in excellent
agreement with TI numerical results even for values of R well into the
discrete regime, R± 1. Systematic discrepancies appear at values of R > 4
and seem to grow as R increases further. The origin of these discrepancies
is currently under investigation; preliminary numerical results (21) suggest a
significant complexity in the properties of the DW at values of R > 4.

Within the scope of the present work, we feel it is justified to state that
(a) in the continuum approximation, and (b) even at moderate levels of
discreteness, our understanding of a prototype one-dimensional phase
transition can be considerably enhanced by making use of the concept of
the thermal stability of a distinctly nonlinear entity. In more plain terms:
formation of the DW can be thought of as ‘‘driving’’ the thermodynamic
instability.
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